
CHAPTER 9

Plotting and Visualization

Making informative visualizations (sometimes called plots) is one of the most impor‐
tant tasks in data analysis. It may be a part of the exploratory process—for example,
to help identify outliers or needed data transformations, or as a way of generating
ideas for models. For others, building an interactive visualization for the web may be
the end goal. Python has many add-on libraries for making static or dynamic visuali‐
zations, but I’ll be mainly focused on matplotlib and libraries that build on top of it.

matplotlib is a desktop plotting package designed for creating (mostly two-
dimensional) publication-quality plots. The project was started by John Hunter in
2002 to enable a MATLAB-like plotting interface in Python. The matplotlib and IPy‐
thon communities have collaborated to simplify interactive plotting from the IPython
shell (and now, Jupyter notebook). matplotlib supports various GUI backends on all
operating systems and additionally can export visualizations to all of the common
vector and raster graphics formats (PDF, SVG, JPG, PNG, BMP, GIF, etc.). With the
exception of a few diagrams, nearly all of the graphics in this book were produced
using matplotlib.

Over time, matplotlib has spawned a number of add-on toolkits for data visualization
that use matplotlib for their underlying plotting. One of these is seaborn, which we
explore later in this chapter.

The simplest way to follow the code examples in the chapter is to use interactive plot‐
ting in the Jupyter notebook. To set this up, execute the following statement in a
Jupyter notebook:

%matplotlib notebook

9.1 A Brief matplotlib API Primer
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In [11]: import matplotlib.pyplot as plt

After running %matplotlib notebook in Jupyter (or simply %matplotlib in IPy‐
thon), we can try creating a simple plot. If everything is set up right, a line plot like
Figure 9-1 should appear:

In [12]: import numpy as np

In [13]: data = np.arange(10)

In [14]: data
Out[14]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [15]: plt.plot(data)

Figure 9-1. Simple line plot

While libraries like seaborn and pandas’s built-in plotting functions will deal with
many of the mundane details of making plots, should you wish to customize them
beyond the function options provided, you will need to learn a bit about the matplot‐
lib API.

There is not enough room in the book to give a comprehensive
treatment to the breadth and depth of functionality in matplotlib. It
should be enough to teach you the ropes to get up and running.
The matplotlib gallery and documentation are the best resource for
learning advanced features.
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Figures and Subplots
Plots in matplotlib reside within a Figure object. You can create a new figure with
plt.figure:

In [16]: fig = plt.figure()

In IPython, an empty plot window will appear, but in Jupyter nothing will be shown
until we use a few more commands. plt.figure has a number of options; notably,
figsize will guarantee the figure has a certain size and aspect ratio if saved to disk.

You can’t make a plot with a blank figure. You have to create one or more subplots
using add_subplot:

In [17]: ax1 = fig.add_subplot(2, 2, 1)

This means that the figure should be 2 × 2 (so up to four plots in total), and we’re
selecting the first of four subplots (numbered from 1). If you create the next two sub‐
plots, you’ll end up with a visualization that looks like Figure 9-2:

In [18]: ax2 = fig.add_subplot(2, 2, 2)

In [19]: ax3 = fig.add_subplot(2, 2, 3)

Figure 9-2. An empty matplotlib figure with three subplots
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One nuance of using Jupyter notebooks is that plots are reset after
each cell is evaluated, so for more complex plots you must put all of
the plotting commands in a single notebook cell.

Here we run all of these commands in the same cell:

fig = plt.figure()
ax1 = fig.add_subplot(2, 2, 1)
ax2 = fig.add_subplot(2, 2, 2)
ax3 = fig.add_subplot(2, 2, 3)

When you issue a plotting command like plt.plot([1.5, 3.5, -2, 1.6]), mat‐
plotlib draws on the last figure and subplot used (creating one if necessary), thus hid‐
ing the figure and subplot creation. So if we add the following command, you’ll get
something like Figure 9-3:

In [20]: plt.plot(np.random.randn(50).cumsum(), 'k--')

Figure 9-3. Data visualization after single plot

The 'k--' is a style option instructing matplotlib to plot a black dashed line. The
objects returned by fig.add_subplot here are AxesSubplot objects, on which you
can directly plot on the other empty subplots by calling each one’s instance method
(see Figure 9-4):
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In [21]: _ = ax1.hist(np.random.randn(100), bins=20, color='k', alpha=0.3)

In [22]: ax2.scatter(np.arange(30), np.arange(30) + 3 * np.random.randn(30))

Figure 9-4. Data visualization after additional plots

You can find a comprehensive catalog of plot types in the matplotlib documentation.

Creating a figure with a grid of subplots is a very common task, so matplotlib
includes a convenience method, plt.subplots, that creates a new figure and returns
a NumPy array containing the created subplot objects:

In [24]: fig, axes = plt.subplots(2, 3)

In [25]: axes
Out[25]: 
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7fb626374048>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7fb62625db00>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7fb6262f6c88>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x7fb6261a36a0>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7fb626181860>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7fb6260fd4e0>]], dtype
=object)

This is very useful, as the axes array can be easily indexed like a two-dimensional
array; for example, axes[0, 1]. You can also indicate that subplots should have the
same x- or y-axis using sharex and sharey, respectively. This is especially useful
when you’re comparing data on the same scale; otherwise, matplotlib autoscales plot
limits independently. See Table 9-1 for more on this method.
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Table 9-1. pyplot.subplots options

Argument Description
nrows Number of rows of subplots
ncols Number of columns of subplots
sharex All subplots should use the same x-axis ticks (adjusting the xlim will affect all subplots)
sharey All subplots should use the same y-axis ticks (adjusting the ylim will affect all subplots)
subplot_kw Dict of keywords passed to add_subplot call used to create each subplot
**fig_kw Additional keywords to subplots are used when creating the figure, such as plt.subplots(2, 2, 

figsize=(8, 6))

Adjusting the spacing around subplots
By default matplotlib leaves a certain amount of padding around the outside of the
subplots and spacing between subplots. This spacing is all specified relative to the
height and width of the plot, so that if you resize the plot either programmatically or
manually using the GUI window, the plot will dynamically adjust itself. You can
change the spacing using the subplots_adjust method on Figure objects, also avail‐
able as a top-level function:

subplots_adjust(left=None, bottom=None, right=None, top=None,
                wspace=None, hspace=None)

wspace and hspace controls the percent of the figure width and figure height, respec‐
tively, to use as spacing between subplots. Here is a small example where I shrink the
spacing all the way to zero (see Figure 9-5):

fig, axes = plt.subplots(2, 2, sharex=True, sharey=True)
for i in range(2):
    for j in range(2):
        axes[i, j].hist(np.random.randn(500), bins=50, color='k', alpha=0.5)
plt.subplots_adjust(wspace=0, hspace=0)

258 | Chapter 9: Plotting and Visualization



Figure 9-5. Data visualization with no inter-subplot spacing

You may notice that the axis labels overlap. matplotlib doesn’t check whether the
labels overlap, so in a case like this you would need to fix the labels yourself by speci‐
fying explicit tick locations and tick labels (we’ll look at how to do this in the follow‐
ing sections).

Colors, Markers, and Line Styles
Matplotlib’s main plot function accepts arrays of x and y coordinates and optionally a
string abbreviation indicating color and line style. For example, to plot x versus y
with green dashes, you would execute:

ax.plot(x, y, 'g--')

This way of specifying both color and line style in a string is provided as a conve‐
nience; in practice if you were creating plots programmatically you might prefer not
to have to munge strings together to create plots with the desired style. The same plot
could also have been expressed more explicitly as:

ax.plot(x, y, linestyle='--', color='g')

There are a number of color abbreviations provided for commonly used colors, but
you can use any color on the spectrum by specifying its hex code (e.g., '#CECECE').
You can see the full set of line styles by looking at the docstring for plot (use plot? in
IPython or Jupyter).
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Line plots can additionally have markers to highlight the actual data points. Since
matplotlib creates a continuous line plot, interpolating between points, it can occa‐
sionally be unclear where the points lie. The marker can be part of the style string,
which must have color followed by marker type and line style (see Figure 9-6):

In [30]: from numpy.random import randn

In [31]: plt.plot(randn(30).cumsum(), 'ko--')

Figure 9-6. Line plot with markers

This could also have been written more explicitly as:

plot(randn(30).cumsum(), color='k', linestyle='dashed', marker='o')

For line plots, you will notice that subsequent points are linearly interpolated by
default. This can be altered with the drawstyle option (Figure 9-7):

In [33]: data = np.random.randn(30).cumsum()

In [34]: plt.plot(data, 'k--', label='Default')
Out[34]: [<matplotlib.lines.Line2D at 0x7fb624d86160>]

In [35]: plt.plot(data, 'k-', drawstyle='steps-post', label='steps-post')
Out[35]: [<matplotlib.lines.Line2D at 0x7fb624d869e8>]

In [36]: plt.legend(loc='best')
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Figure 9-7. Line plot with different drawstyle options

You may notice output like <matplotlib.lines.Line2D at ...> when you run this.
matplotlib returns objects that reference the plot subcomponent that was just added.
A lot of the time you can safely ignore this output. Here, since we passed the label
arguments to plot, we are able to create a plot legend to identify each line using
plt.legend.

You must call plt.legend (or ax.legend, if you have a reference to
the axes) to create the legend, whether or not you passed the label
options when plotting the data.

Ticks, Labels, and Legends
For most kinds of plot decorations, there are two main ways to do things: using the 
procedural pyplot interface (i.e., matplotlib.pyplot) and the more object-oriented
native matplotlib API.

The pyplot interface, designed for interactive use, consists of methods like xlim,
xticks, and xticklabels. These control the plot range, tick locations, and tick labels,
respectively. They can be used in two ways:
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• Called with no arguments returns the current parameter value (e.g., plt.xlim()
returns the current x-axis plotting range)

• Called with parameters sets the parameter value (e.g., plt.xlim([0, 10]), sets
the x-axis range to 0 to 10)

All such methods act on the active or most recently created AxesSubplot. Each of
them corresponds to two methods on the subplot object itself; in the case of xlim
these are ax.get_xlim and ax.set_xlim. I prefer to use the subplot instance methods
myself in the interest of being explicit (and especially when working with multiple
subplots), but you can certainly use whichever you find more convenient.

Setting the title, axis labels, ticks, and ticklabels
To illustrate customizing the axes, I’ll create a simple figure and plot of a random
walk (see Figure 9-8):

In [37]: fig = plt.figure()

In [38]: ax = fig.add_subplot(1, 1, 1)

In [39]: ax.plot(np.random.randn(1000).cumsum())

Figure 9-8. Simple plot for illustrating xticks (with label)

To change the x-axis ticks, it’s easiest to use set_xticks and set_xticklabels. The
former instructs matplotlib where to place the ticks along the data range; by default
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these locations will also be the labels. But we can set any other values as the labels
using set_xticklabels:

In [40]: ticks = ax.set_xticks([0, 250, 500, 750, 1000])

In [41]: labels = ax.set_xticklabels(['one', 'two', 'three', 'four', 'five'],
   ....:                             rotation=30, fontsize='small')

The rotation option sets the x tick labels at a 30-degree rotation. Lastly, set_xlabel
gives a name to the x-axis and set_title the subplot title (see Figure 9-9 for the
resulting figure):

In [42]: ax.set_title('My first matplotlib plot')
Out[42]: <matplotlib.text.Text at 0x7fb624d055f8>

In [43]: ax.set_xlabel('Stages')

Figure 9-9. Simple plot for illustrating xticks

Modifying the y-axis consists of the same process, substituting y for x in the above.
The axes class has a set method that allows batch setting of plot properties. From the
prior example, we could also have written:

props = {
    'title': 'My first matplotlib plot',
    'xlabel': 'Stages'
}
ax.set(**props)
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Adding legends
Legends are another critical element for identifying plot elements. There are a couple
of ways to add one. The easiest is to pass the label argument when adding each piece
of the plot:

In [44]: from numpy.random import randn

In [45]: fig = plt.figure(); ax = fig.add_subplot(1, 1, 1)

In [46]: ax.plot(randn(1000).cumsum(), 'k', label='one')
Out[46]: [<matplotlib.lines.Line2D at 0x7fb624bdf860>]

In [47]: ax.plot(randn(1000).cumsum(), 'k--', label='two')
Out[47]: [<matplotlib.lines.Line2D at 0x7fb624be90f0>]

In [48]: ax.plot(randn(1000).cumsum(), 'k.', label='three')
Out[48]: [<matplotlib.lines.Line2D at 0x7fb624be9160>]

Once you’ve done this, you can either call ax.legend() or plt.legend() to automat‐
ically create a legend. The resulting plot is in Figure 9-10:

In [49]: ax.legend(loc='best')

Figure 9-10. Simple plot with three lines and legend

The legend method has several other choices for the location loc argument. See the
docstring (with ax.legend?) for more information.
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The loc tells matplotlib where to place the plot. If you aren’t picky, 'best' is a good
option, as it will choose a location that is most out of the way. To exclude one or more
elements from the legend, pass no label or label='_nolegend_'.

Annotations and Drawing on a Subplot
In addition to the standard plot types, you may wish to draw your own plot annota‐
tions, which could consist of text, arrows, or other shapes. You can add annotations
and text using the text, arrow, and annotate functions. text draws text at given
coordinates (x, y) on the plot with optional custom styling:

ax.text(x, y, 'Hello world!',
        family='monospace', fontsize=10)

Annotations can draw both text and arrows arranged appropriately. As an example,
let’s plot the closing S&P 500 index price since 2007 (obtained from Yahoo! Finance)
and annotate it with some of the important dates from the 2008–2009 financial crisis.
You can most easily reproduce this code example in a single cell in a Jupyter note‐
book. See Figure 9-11 for the result:

from datetime import datetime

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)

data = pd.read_csv('examples/spx.csv', index_col=0, parse_dates=True)
spx = data['SPX']

spx.plot(ax=ax, style='k-')

crisis_data = [
    (datetime(2007, 10, 11), 'Peak of bull market'),
    (datetime(2008, 3, 12), 'Bear Stearns Fails'),
    (datetime(2008, 9, 15), 'Lehman Bankruptcy')
]

for date, label in crisis_data:
    ax.annotate(label, xy=(date, spx.asof(date) + 75),
                xytext=(date, spx.asof(date) + 225),
                arrowprops=dict(facecolor='black', headwidth=4, width=2,
                                headlength=4),
                horizontalalignment='left', verticalalignment='top')

# Zoom in on 2007-2010
ax.set_xlim(['1/1/2007', '1/1/2011'])
ax.set_ylim([600, 1800])

ax.set_title('Important dates in the 2008-2009 financial crisis')
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Figure 9-11. Important dates in the 2008–2009 financial crisis

There are a couple of important points to highlight in this plot: the ax.annotate
method can draw labels at the indicated x and y coordinates. We use the set_xlim
and set_ylim methods to manually set the start and end boundaries for the plot
rather than using matplotlib’s default. Lastly, ax.set_title adds a main title to the
plot.

See the online matplotlib gallery for many more annotation examples to learn from.

Drawing shapes requires some more care. matplotlib has objects that represent many
common shapes, referred to as patches. Some of these, like Rectangle and Circle, are
found in matplotlib.pyplot, but the full set is located in matplotlib.patches.

To add a shape to a plot, you create the patch object shp and add it to a subplot by
calling ax.add_patch(shp) (see Figure 9-12):

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)

rect = plt.Rectangle((0.2, 0.75), 0.4, 0.15, color='k', alpha=0.3)
circ = plt.Circle((0.7, 0.2), 0.15, color='b', alpha=0.3)
pgon = plt.Polygon([[0.15, 0.15], [0.35, 0.4], [0.2, 0.6]],
                   color='g', alpha=0.5)

ax.add_patch(rect)
ax.add_patch(circ)
ax.add_patch(pgon)
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Figure 9-12. Data visualization composed from three different patches

If you look at the implementation of many familiar plot types, you will see that they
are assembled from patches.

Saving Plots to File
You can save the active figure to file using plt.savefig. This method is equivalent to
the figure object’s savefig instance method. For example, to save an SVG version of a
figure, you need only type:

plt.savefig('figpath.svg')

The file type is inferred from the file extension. So if you used .pdf instead, you
would get a PDF. There are a couple of important options that I use frequently for
publishing graphics: dpi, which controls the dots-per-inch resolution, and
bbox_inches, which can trim the whitespace around the actual figure. To get the
same plot as a PNG with minimal whitespace around the plot and at 400 DPI, you
would do:

plt.savefig('figpath.png', dpi=400, bbox_inches='tight')

savefig doesn’t have to write to disk; it can also write to any file-like object, such as a
BytesIO:

from io import BytesIO
buffer = BytesIO()
plt.savefig(buffer)
plot_data = buffer.getvalue()

See Table 9-2 for a list of some other options for savefig.
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Table 9-2. Figure.savefig options

Argument Description
fname String containing a filepath or a Python file-like object. The figure format is inferred from the file

extension (e.g., .pdf for PDF or .png for PNG)
dpi The figure resolution in dots per inch; defaults to 100 out of the box but can be configured
facecolor, 

edgecolor

The color of the figure background outside of the subplots; 'w' (white), by default

format The explicit file format to use ('png', 'pdf', 'svg', 'ps', 'eps', ...)
bbox_inches The portion of the figure to save; if 'tight' is passed, will attempt to trim the empty space around

the figure

matplotlib Configuration
matplotlib comes configured with color schemes and defaults that are geared primar‐
ily toward preparing figures for publication. Fortunately, nearly all of the default
behavior can be customized via an extensive set of global parameters governing figure
size, subplot spacing, colors, font sizes, grid styles, and so on. One way to modify the
configuration programmatically from Python is to use the rc method; for example, to
set the global default figure size to be 10 × 10, you could enter:

plt.rc('figure', figsize=(10, 10))

The first argument to rc is the component you wish to customize, such as 'figure',
'axes', 'xtick', 'ytick', 'grid', 'legend', or many others. After that can follow a
sequence of keyword arguments indicating the new parameters. An easy way to write
down the options in your program is as a dict:

font_options = {'family' : 'monospace',
                'weight' : 'bold',
                'size'   : 'small'}
plt.rc('font', **font_options)

For more extensive customization and to see a list of all the options, matplotlib comes
with a configuration file matplotlibrc in the matplotlib/mpl-data directory. If you cus‐
tomize this file and place it in your home directory titled .matplotlibrc, it will be
loaded each time you use matplotlib.

As we’ll see in the next section, the seaborn package has several built-in plot themes
or styles that use matplotlib’s configuration system internally.

9.2 Plotting with pandas and seaborn
matplotlib can be a fairly low-level tool. You assemble a plot from its base compo‐
nents: the data display (i.e., the type of plot: line, bar, box, scatter, contour, etc.), leg‐
end, title, tick labels, and other annotations.
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In pandas we may have multiple columns of data, along with row and column labels.
pandas itself has built-in methods that simplify creating visualizations from Data‐
Frame and Series objects. Another library is seaborn, a statistical graphics library cre‐
ated by Michael Waskom. Seaborn simplifies creating many common visualization
types.

Importing seaborn modifies the default matplotlib color schemes
and plot styles to improve readability and aesthetics. Even if you do
not use the seaborn API, you may prefer to import seaborn as a
simple way to improve the visual aesthetics of general matplotlib
plots.

Line Plots
Series and DataFrame each have a plot attribute for making some basic plot types. By
default, plot() makes line plots (see Figure 9-13):

In [60]: s = pd.Series(np.random.randn(10).cumsum(), index=np.arange(0, 100, 10))

In [61]: s.plot()

Figure 9-13. Simple Series plot

The Series object’s index is passed to matplotlib for plotting on the x-axis, though you
can disable this by passing use_index=False. The x-axis ticks and limits can be
adjusted with the xticks and xlim options, and y-axis respectively with yticks and
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ylim. See Table 9-3 for a full listing of plot options. I’ll comment on a few more of
them throughout this section and leave the rest to you to explore.

Most of pandas’s plotting methods accept an optional ax parameter, which can be a
matplotlib subplot object. This gives you more flexible placement of subplots in a grid
layout.

DataFrame’s plot method plots each of its columns as a different line on the same
subplot, creating a legend automatically (see Figure 9-14):

In [62]: df = pd.DataFrame(np.random.randn(10, 4).cumsum(0),
   ....:                   columns=['A', 'B', 'C', 'D'],
   ....:                   index=np.arange(0, 100, 10))

In [63]: df.plot()

Figure 9-14. Simple DataFrame plot

The plot attribute contains a “family” of methods for different plot types. For exam‐
ple, df.plot() is equivalent to df.plot.line(). We’ll explore some of these methods
next.

Additional keyword arguments to plot are passed through to the
respective matplotlib plotting function, so you can further custom‐
ize these plots by learning more about the matplotlib API.
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Table 9-3. Series.plot method arguments

Argument Description
label Label for plot legend
ax matplotlib subplot object to plot on; if nothing passed, uses active matplotlib subplot
style Style string, like 'ko--', to be passed to matplotlib
alpha The plot fill opacity (from 0 to 1)
kind Can be 'area', 'bar', 'barh', 'density', 'hist', 'kde', 'line', 'pie'
logy Use logarithmic scaling on the y-axis
use_index Use the object index for tick labels
rot Rotation of tick labels (0 through 360)
xticks Values to use for x-axis ticks
yticks Values to use for y-axis ticks
xlim x-axis limits (e.g., [0, 10])
ylim y-axis limits
grid Display axis grid (on by default)

DataFrame has a number of options allowing some flexibility with how the columns
are handled; for example, whether to plot them all on the same subplot or to create
separate subplots. See Table 9-4 for more on these.

Table 9-4. DataFrame-specific plot arguments

Argument Description
subplots Plot each DataFrame column in a separate subplot
sharex If subplots=True, share the same x-axis, linking ticks and limits
sharey If subplots=True, share the same y-axis
figsize Size of figure to create as tuple
title Plot title as string
legend Add a subplot legend (True by default)
sort_columns Plot columns in alphabetical order; by default uses existing column order

For time series plotting, see Chapter 11.
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Bar Plots
The plot.bar() and plot.barh() make vertical and horizontal bar plots, respec‐
tively. In this case, the Series or DataFrame index will be used as the x (bar) or y
(barh) ticks (see Figure 9-15):

In [64]: fig, axes = plt.subplots(2, 1)

In [65]: data = pd.Series(np.random.rand(16), index=list('abcdefghijklmnop'))

In [66]: data.plot.bar(ax=axes[0], color='k', alpha=0.7)
Out[66]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb62493d470>

In [67]: data.plot.barh(ax=axes[1], color='k', alpha=0.7)

Figure 9-15. Horizonal and vertical bar plot

The options color='k' and alpha=0.7 set the color of the plots to black and use par‐
tial transparency on the filling.
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With a DataFrame, bar plots group the values in each row together in a group in bars,
side by side, for each value. See Figure 9-16:

In [69]: df = pd.DataFrame(np.random.rand(6, 4),
   ....:                   index=['one', 'two', 'three', 'four', 'five', 'six'],
   ....:                   columns=pd.Index(['A', 'B', 'C', 'D'], name='Genus'))

In [70]: df
Out[70]: 
Genus         A         B         C         D
one    0.370670  0.602792  0.229159  0.486744
two    0.420082  0.571653  0.049024  0.880592
three  0.814568  0.277160  0.880316  0.431326
four   0.374020  0.899420  0.460304  0.100843
five   0.433270  0.125107  0.494675  0.961825
six    0.601648  0.478576  0.205690  0.560547

In [71]: df.plot.bar()

Figure 9-16. DataFrame bar plot

Note that the name “Genus” on the DataFrame’s columns is used to title the legend.
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We create stacked bar plots from a DataFrame by passing stacked=True, resulting in
the value in each row being stacked together (see Figure 9-17):

In [73]: df.plot.barh(stacked=True, alpha=0.5)

Figure 9-17. DataFrame stacked bar plot

A useful recipe for bar plots is to visualize a Series’s value frequency 
using value_counts: s.value_counts().plot.bar().

Returning to the tipping dataset used earlier in the book, suppose we wanted to make
a stacked bar plot showing the percentage of data points for each party size on each
day. I load the data using read_csv and make a cross-tabulation by day and party size:

In [75]: tips = pd.read_csv('examples/tips.csv')

In [76]: party_counts = pd.crosstab(tips['day'], tips['size'])

In [77]: party_counts
Out[77]: 
size  1   2   3   4  5  6
day                      
Fri   1  16   1   1  0  0
Sat   2  53  18  13  1  0
Sun   0  39  15  18  3  1
Thur  1  48   4   5  1  3
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# Not many 1- and 6-person parties
In [78]: party_counts = party_counts.loc[:, 2:5]

Then, normalize so that each row sums to 1 and make the plot (see Figure 9-18):

# Normalize to sum to 1
In [79]: party_pcts = party_counts.div(party_counts.sum(1), axis=0)

In [80]: party_pcts
Out[80]: 
size         2         3         4         5
day                                         
Fri   0.888889  0.055556  0.055556  0.000000
Sat   0.623529  0.211765  0.152941  0.011765
Sun   0.520000  0.200000  0.240000  0.040000
Thur  0.827586  0.068966  0.086207  0.017241

In [81]: party_pcts.plot.bar()

Figure 9-18. Fraction of parties by size on each day

So you can see that party sizes appear to increase on the weekend in this dataset.

With data that requires aggregation or summarization before making a plot, using the
seaborn package can make things much simpler. Let’s look now at the tipping per‐
centage by day with seaborn (see Figure 9-19 for the resulting plot):

9.2 Plotting with pandas and seaborn | 275



In [83]: import seaborn as sns

In [84]: tips['tip_pct'] = tips['tip'] / (tips['total_bill'] - tips['tip'])

In [85]: tips.head()
Out[85]: 
   total_bill   tip smoker  day    time  size   tip_pct
0       16.99  1.01     No  Sun  Dinner     2  0.063204
1       10.34  1.66     No  Sun  Dinner     3  0.191244
2       21.01  3.50     No  Sun  Dinner     3  0.199886
3       23.68  3.31     No  Sun  Dinner     2  0.162494
4       24.59  3.61     No  Sun  Dinner     4  0.172069

In [86]: sns.barplot(x='tip_pct', y='day', data=tips, orient='h')

Figure 9-19. Tipping percentage by day with error bars

Plotting functions in seaborn take a data argument, which can be a pandas Data‐
Frame. The other arguments refer to column names. Because there are multiple
observations for each value in the day, the bars are the average value of tip_pct. The
black lines drawn on the bars represent the 95% confidence interval (this can be con‐
figured through optional arguments).
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seaborn.barplot has a hue option that enables us to split by an additional categorical
value (Figure 9-20):

In [88]: sns.barplot(x='tip_pct', y='day', hue='time', data=tips, orient='h')

Figure 9-20. Tipping percentage by day and time

Notice that seaborn has automatically changed the aesthetics of plots: the default
color palette, plot background, and grid line colors. You can switch between different
plot appearances using seaborn.set:

In [90]: sns.set(style="whitegrid")

Histograms and Density Plots
A histogram is a kind of bar plot that gives a discretized display of value frequency.
The data points are split into discrete, evenly spaced bins, and the number of data
points in each bin is plotted. Using the tipping data from before, we can make a histo‐
gram of tip percentages of the total bill using the plot.hist method on the Series
(see Figure 9-21):

In [92]: tips['tip_pct'].plot.hist(bins=50)
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Figure 9-21. Histogram of tip percentages

A related plot type is a density plot, which is formed by computing an estimate of a
continuous probability distribution that might have generated the observed data. The
usual procedure is to approximate this distribution as a mixture of “kernels”—that is,
simpler distributions like the normal distribution. Thus, density plots are also known
as kernel density estimate (KDE) plots. Using plot.kde makes a density plot using
the conventional mixture-of-normals estimate (see Figure 9-22):

In [94]: tips['tip_pct'].plot.density()
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Figure 9-22. Density plot of tip percentages

Seaborn makes histograms and density plots even easier through its distplot
method, which can plot both a histogram and a continuous density estimate simulta‐
neously. As an example, consider a bimodal distribution consisting of draws from
two different standard normal distributions (see Figure 9-23):

In [96]: comp1 = np.random.normal(0, 1, size=200)

In [97]: comp2 = np.random.normal(10, 2, size=200)

In [98]: values = pd.Series(np.concatenate([comp1, comp2]))

In [99]: sns.distplot(values, bins=100, color='k')
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Figure 9-23. Normalized histogram of normal mixture with density estimate

Scatter or Point Plots
Point plots or scatter plots can be a useful way of examining the relationship between
two one-dimensional data series. For example, here we load the macrodata dataset
from the statsmodels project, select a few variables, then compute log differences:

In [100]: macro = pd.read_csv('examples/macrodata.csv')

In [101]: data = macro[['cpi', 'm1', 'tbilrate', 'unemp']]

In [102]: trans_data = np.log(data).diff().dropna()

In [103]: trans_data[-5:]
Out[103]: 
          cpi        m1  tbilrate     unemp
198 -0.007904  0.045361 -0.396881  0.105361
199 -0.021979  0.066753 -2.277267  0.139762
200  0.002340  0.010286  0.606136  0.160343
201  0.008419  0.037461 -0.200671  0.127339
202  0.008894  0.012202 -0.405465  0.042560
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We can then use seaborn’s regplot method, which makes a scatter plot and fits a lin‐
ear regression line (see Figure 9-24):

In [105]: sns.regplot('m1', 'unemp', data=trans_data)
Out[105]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb613720be0>

In [106]: plt.title('Changes in log %s versus log %s' % ('m1', 'unemp'))

Figure 9-24. A seaborn regression/scatter plot

In exploratory data analysis it’s helpful to be able to look at all the scatter plots among
a group of variables; this is known as a pairs plot or scatter plot matrix. Making such a
plot from scratch is a bit of work, so seaborn has a convenient pairplot function,
which supports placing histograms or density estimates of each variable along the
diagonal (see Figure 9-25 for the resulting plot):

In [107]: sns.pairplot(trans_data, diag_kind='kde', plot_kws={'alpha': 0.2})
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Figure 9-25. Pair plot matrix of statsmodels macro data

You may notice the plot_kws argument. This enables us to pass down configuration
options to the individual plotting calls on the off-diagonal elements. Check out the
seaborn.pairplot docstring for more granular configuration options.
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Facet Grids and Categorical Data
What about datasets where we have additional grouping dimensions? One way to vis‐
ualize data with many categorical variables is to use a facet grid. Seaborn has a useful
built-in function factorplot that simplifies making many kinds of faceted plots (see
Figure 9-26 for the resulting plot):

In [108]: sns.factorplot(x='day', y='tip_pct', hue='time', col='smoker',
   .....:                kind='bar', data=tips[tips.tip_pct < 1])

Figure 9-26. Tipping percentage by day/time/smoker

Instead of grouping by 'time' by different bar colors within a facet, we can also
expand the facet grid by adding one row per time value (Figure 9-27):

In [109]: sns.factorplot(x='day', y='tip_pct', row='time',
   .....:                col='smoker',
   .....:                kind='bar', data=tips[tips.tip_pct < 1])
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Figure 9-27. tip_pct by day; facet by time/smoker

factorplot supports other plot types that may be useful depending on what you are
trying to display. For example, box plots (which show the median, quartiles, and out‐
liers) can be an effective visualization type (Figure 9-28):

In [110]: sns.factorplot(x='tip_pct', y='day', kind='box',
   .....:                data=tips[tips.tip_pct < 0.5])
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Figure 9-28. Box plot of tip_pct by day

You can create your own facet grid plots using the more general seaborn.FacetGrid
class. See the seaborn documentation for more.

9.3 Other Python Visualization Tools
As is common with open source, there are a plethora of options for creating graphics
in Python (too many to list). Since 2010, much development effort has been focused
on creating interactive graphics for publication on the web. With tools like Bokeh and
Plotly, it’s now possible to specify dynamic, interactive graphics in Python that are
destined for a web browser.

For creating static graphics for print or web, I recommend defaulting to matplotlib
and add-on libraries like pandas and seaborn for your needs. For other data visualiza‐
tion requirements, it may be useful to learn one of the other available tools out there.
I encourage you to explore the ecosystem as it continues to involve and innovate into
the future.
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https://seaborn.pydata.org/
http://bokeh.pydata.org/
https://github.com/plotly/plotly.py

	Plotting & Visualization
	A Brief matplotlib API Primer
	Plotting with pandas and seaborn
	Other Python Visualization Tools


